https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14816
Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence
Table 1. Clinical trials for natural compounds or herbal medicines combining with chemotherapy
Recruitment statusNatural compoundsDrugsPhaseDiseaseTrial ID
Clinical trial for natural compound combinations | |||||
Unknown | Curcumin | Gemcitabine Celebrex |
III | Pancreatic cancer | NCT00486460 |
+ | + | + | + | Colon cancer | NCT00295035 |
Clinical trial for herbal products combinations | |||||
Completed | Teng-Long-Bu-Zhong-Tang | Oxaliplatin Capecitabine |
II | Colon cancer | NCT01975454 |
TCM | Cyclophosphamide Doxorubicin HCl |
+ | Breast cancer | NCT00028964 | |
+ | Docetaxel Vinorelbine Gemcitabine |
+ | NSCLC | NCT01780181 | |
+ | Vinorelbine Platinum-based chemotherapy |
III | + | NCT01441752 | |
+ | CDDP 5-FU |
II | Peritoneal carcinomatosis | NCT02638051 | |
Jin Fu Kang | Docetaxel | + | NSCLC | NCT00260026 | |
Recruiting | TCM | Adjuvant chemotherapy | + | Breast cancer | NCT03797248 |
+ | Standard chemotherapy protocols | I | NSCLC | NCT02737735 | |
Enrolling by invitation | Yiqi-yangyin-jiedu decoction | Gefitinib | III | Lung cancer | NCT02929693 |
Active, not recruiting | PHY906 | Sorafenib Tosylate | I | Liver cancer | NCT01666756 |
Unknown | + | Gefitinib Erlotinib Icotinib |
NA | Pulmonary adenocarcinoma | NCT01745302 |
+ | Lotrozole | NA | Polycystic ovary syndrome | NCT01431352 |
- Note. For detail information about each clinical trial, see following website: https://clinicaltrials.gov/.
- Abbreviations: +, The same with above cell; 5-FU, 5-Fluorouracil; CDDP, cisplatin; NA, not applicable; NSCLC, non-small-cell lung cancer; TCM, traditional Chinese medicine.
Table 2. Herbal compounds act as an enhancer of cancer therapy
Structure subclassNatural compoundChemotherapeutic drugCancerSignal pathwayReferencea
Cell death via specific signalling pathway | |||||
Alkaloid | 3,3′-Diindolylmethane | Cisplatin | Ovary | STAT3/Akt | (Zou, Xu, Li, Zhang, & Fan, 2018) |
Berberine | Radiation | Esophagus | Rad51 | (Liu et al., 2011) | |
Ethoxysanguinarine | Cisplatin | Lung | CIP2A | (Liu, Ma, Wen, Cheng, & Zhou, 2014) | |
Melatonin | + | Liver | NF-κB/AP-2β | (Hao et al., 2017) | |
Neferine | Doxorubicin | Lung | Fas/ROS | (Poornima, Kumar, Weng, & Padma, 2014) | |
Noscapine | Cisplatin | Ovary | HIF-1α | (Su et al., 2011) | |
Piperlongumine | Doxorubicin | Prostate | Carbonyl reductase 1 | (Piska et al., 2019) | |
Capsaicinoid | Capsaicin | Radiation | Prostate | NF-κB | (Venier et al., 2015) |
Diarylheptanoid | Curcumin | 5-FU | Gastric | NF-κB | (Kang et al., 2016) |
+ | Carboplatin | Lung | Akt/NF-κB | (Kang et al., 2015) | |
+ | + | Breast | FEN1 | (Zou et al., 2018) | |
+ | + | Colorectal | endoG/NF-κB | (Wang, Liu, & Su, 2014) | |
+ | + | Lymphoma | Rad51, apoptosis-Caspase | (Zhao et al., 2018) | |
+ | + | Neuroblastoma | Uniquitin | (D'Aguanno et al., 2012) | |
+ | + | Ovary | c-Myb/STAT3/NF-κB | (Tian, Tian, Qiao, Li, & Zhang, 2019) | |
+ | Doxorubicin | Gastric | NF-κB | (Yu, Wu, Dai, Yu, & Si, 2011) | |
+ | Radiation | Prostate | miR-143 | (Liu, Li, Wang, & Luo, 2017) | |
+ | Rhtrail | Breast | DR5/IAP | (Park, Cho, Andera, Suh, & Kim, 2013) | |
Diterpenoid | Adenanthin | 1,25 dihydroxyvitamin D3 | Leukaemia | Prx-1/C/EBP | (Wei et al., 2016) |
Cryptotanshinone | Cisplatin | Ovary | MMP-2 and MMP-9 | (Jiang et al., 2017) | |
+ | Paclitaxel | Oral | JAK/STAT3 e-Cadherin/p53/β-catenin |
(Wang et al., 2017) | |
Flavonoid | (−)-Epicatechin | Radiation | Pancreas/Glioma | Chk1/p21 | (Elbaz, Lee, Antwih, Liu, Huttemann, & Zielske, 2014) |
Formononetin | Doxorubicin | Gastric | HDAC5 | (Liu et al., 2015) | |
Icariin | 5-FU | Colorectal | NF-κB | (Shi et al., 2014) | |
Luteolin | Cisplatin | Bile duct | PI3K/Akt/mTOR/SREP | (Lim, Yang, Bazer, & Song, 2016) | |
Naringenin | Paclitaxel | Prostate | PI3K/Akt and MAPK | (Lim, Park, Bazer, & Song, 2017) | |
WYC02 | Cisplatin | Multi cancer | ATM | (Wang et al., 2012) | |
Quercetin | Rhtrail | Breast | c-FLIP/DR5 | (Manouchehri, Turner, & Kalafatis, 2018) | |
Silibinin | 5-FU | Colorectal | PI3K/MAPK/CTNNB1/nanog/CD44v6 | (Patel et al., 2018) | |
Isoprenoid | Vitamine K2 | + | Liver | NF-κB | (Zhang et al., 2011) |
Macrolide | Elaiophylin | Cisplatin | Ovary | Cathepsin | (Zhao et al., 2015) |
Monoterpenoid | Borneol | + | Oesophagus | PI3K/Akt | (Meng et al., 2018) |
Organosulfur | Sulforaphane | Doxorubicin | Ovary | SFN, CA IX | (Pastorek et al., 2015) |
Phenolic | Anacardic acid | Radiation | Prostate | γ-H2AX | (Yao et al., 2015) |
Caffeic acid | Metformin | Cervix | AMPK/TCA cycle | (Tyszka-Czochara, Konieczny, & Majka, 2017) | |
+ | + | + | SNAI1/MMP-9 | (Tyszka-Czochara, Lasota, & Majka, 2018) | |
Capsaicin | Docetaxel | Prostate | PTEN/PI3K/Akt/mTOR LKB1/AMPK |
(Sanchez, Bort, Mateos-Gomez, Rodriguez-Henche, & Diaz-Laviada, 2019) | |
Dicoumarol | Doxorubicin | Urinary tract | NADPH quinone oxidoreductase | (Matsui et al., 2010) | |
Emodin | Tamoxifen | Breast | Ras/ERK PI3K/mTOR |
(Tseng et al., 2017) | |
Polyyne | Falcarindiol | 5-FU | Colorectal | ER stress | (Jin et al., 2012) |
Susquiterpenoid | Heteronemin | Cytarabine | Leukaemia | Ras farnesylation | (Saikia et al., 2018) |
β-Eudesmol | Doxorubicin 5-FU |
Bile duct | NADPH quinone oxidoreductase | (Srijiwangsa, Ponnikorn, & Na-Bangchang, 2018) | |
Phytosteroid | Polyphyllin D | Cisplatin | Ovary | 18 unique genes | (Al Sawah et al., 2015) |
Tenacigenin B derivative | Paclitaxel | Ovary | Inhibit Cytochrome P450 | (Xie et al., 2019) | |
Stilbenoid | Resveratrol | Cisplatin | Lung | Mitochondrial depolarization | (Ma et al., 2015) |
+ | Doxorubicin | Breast | HSP-27 | (Diaz-Chavez et al., 2013) | |
+ | + | + | Carbonyl reductase 1 | (Ito et al., 2013) | |
Tetrahydrofuran | Acetogenin | Doxorubicin | Ovary | Mitochondrial complex I | (Tormo et al., 2003) |
Tripyrrole | Prodigiosin | Paclitaxel | + | Survivin | (Ho et al., 2009) |
+ | Doxorubicin | Oral | Doxorubicin accumulation | (Lin & Weng, 2018) | |
Triterpenoid | Brusatol | 5-FU | Pancreas | e-cadherin/Twist/vimentin/NF-κB | (Lu, Lai, Leung, Leung, Li, & Lin, 2017) |
Triterpenoid | Celastrol | Cisplatin | Lung | FANCD2 | (Wang, Liu, Cheng, & Zhou, 2015) |
+ | Tanespimycin | Glioblastoma | P62, Hsp72, Hsp90 | (Boridy, Le, Petrecca, & Maysinger, 2014) | |
Xanthonoid | Formononetin | Metformin | Breast | ERK1/2/Bcl-2 | (Xin, Wang, Ren, & Guo, 2019) |
Via apoptosis or autophagy | |||||
Alkaloid | Berberine | Sorafenib | Liver | Apoptosis-Intrinsic | (Huang et al., 2018) |
Indole-3-carbinol | Cisplatin | Ovary | + | (Taylor-Harding et al., 2012) | |
+ | Doxorubicin | Cervix | + | (Adwas, Elkhoely, Kabel, Abdel-Rahman, & Eissa, 2016) | |
Carotenoid | Bixin | + | Acute leukaemia | Apoptosis | (Santos, Almeida, Antunes, & Bianchi, 2016) |
Diarylheptanoid | Curcumin | Cisplatin | Lung | Apoptosis-Intrinsic | (Baharuddin et al., 2016) |
+ | + | Oral | Apoptosis-Intrinsic | (Chen et al., 2018) | |
+ | Sorafenib | Liver | Apoptosis-Intrinsic | (Bahman, Abaza, Khoushiash, & Al-Attiyah, 2018) | |
Diterpenoid | Crassin | Doxorubicin | Breast | Apoptosis-ROS | (Richards, Vellanki, Smith, & Hopkins, 2018) |
Ent-kaurane-type diterpenoids | + | Liver | Apoptosis | (Pham, Iscache, Pham, & Gairin, 2016) | |
Flavonoid | Eupatorin | + | Colorectal | Apoptosis-Intrinsic | (Namazi Sarvestani, Sepehri, Delphi, & Moridi Farimani, 2018) |
Phloretin | Cisplatin | Lung | Apoptotic/MMPs | (Ma, Wang, Nan, Li, Wang, & Jin, 2016) | |
Salvigenin | Doxorubicin | Colorectal | Apoptosis-Intrinsic | (Namazi Sarvestani, Sepehri, Delphi, & Moridi Farimani, 2018) | |
Lignan | Enterolactone | + | Breast | Apoptosis | (Di, De Silva, Krol, & Alcorn, 2018) |
Secoisolariciresinol | + | + | + | (Di, De Silva, Krol, & Alcorn, 2018) | |
Organosulfur | Lipoic acid | Temozolomide | Colorectal | Autophagy | (Goder et al., 2015) |
Alyssin | 5-FU | Colorectal | Apoptosis-Extrinsic | (Milczarek et al., 2018) | |
Phenolic | Embelin | Photodynamic therapy | Ehrlich | Apoptosis-Intrinsic | (Joy, Nishanth Kumar, Soumya, Radhika, Vibin, & Abraham, 2014) |
Phenolic | Nordihydroguaiaretic acid | Cisplatin | Breast | ROS | (Mundhe, Kumar, Ahmed, Jamdade, Mundhe, & Lahkar, 2015) |
Phenolic | Osthole | + | Lung | Apoptosis-Intrinsic | (Xu et al., 2013) |
Sesquiterpenes | Trans-nerolidol | Doxorubicin | Breast | doxorubicin accumulation | (Hanusova et al., 2017) |
β-Caryophyllene oxide | + | + | + | (Hanusova et al., 2017) | |
β-Elemene | Cisplatin | Lung/Brain/Breast/ Cervix/Ovary/Colorectal |
Apoptpsis-Intrinsic & Extrinsic | (Li et al., 2013) | |
Stilbenoid | Resveratrol | Sorafenib | Liver | Apoptosis-Intrinsic | (Bahman, Abaza, Khoushiash, & Al-Attiyah, 2018) |
Triterpenoid | Withaferin A | Radiation | Lymphoma | Apoptosis-ROS, Bcl-2 | (Yang, Choi, Kim, Choi, & Kwon, 2011) |
Acetyl-11-keto-β-boswellic acid | + | Glioblastoma | Apoptosis-Intrinsic | (Conti et al., 2018) | |
Xanthonoid | Forbesione | 5-FU | Bile duct | Apoptosis-Intrinsic | (Boueroy et al., 2017) |
Gambogic acid | Doxorubicin | Ovary | Apoptosis-ROS | (Wang & Yuan, 2013) | |
Kaempferol | Sorafenib | Liver | Apoptosis-Intrinsic | (Bahman, Abaza, Khoushiash, & Al-Attiyah, 2018) | |
Reducing chemoresistance via specific mechanism | |||||
Alkaloid | Aaptamine | Cisplatin | Embryonal carcinoma | myc, p53, eIF5A hypusination | (Dyshlovoy et al., 2014) |
Demethyloxyaaptamine | + | + | TNF | (Dyshlovoy et al., 2014) | |
Isoaaptamine | + | + | myc, p53, TNF | (Dyshlovoy et al., 2014) | |
Sinapine | Doxorubicin | Colorectal | FGFR4-FRS2α-ERK1/2 | (Guo, An, Feng, Liu, Wang, & Zhang, 2014) | |
Diarylheptanoid | Curcumin | Cisplatin | Lung | FA/BRCA | (Chen, Li, Jiang, Lan, & Chen, 2015) |
+ | + | Ovary | MEG3, miR-214 | (Zhang, Liu, Xu, & Li, 2017) | |
+ | + | + | miR-186 | (Tang, Zhang, & Du, 2010) | |
Flavonoid | Isoliquiritigenin | + | Oral | ALDH1, CD44, GRP78 | (Hu, Yu, Hsieh, Liao, Lu, & Chu, 2017) |
Tectorigenin | Paclitaxel | Ovary | Akt/iκB/IKK | (Yang et al., 2012) | |
Wogonin | Doxorubicin | Breast | Nrf2 | (Zhong et al., 2013) | |
Lignan | Silybin | + | Colon | GLUT1 | (Catanzaro et al., 2018) |
Nucleoside | Clitocine | + | Liver | NF-κB | (Sun et al., 2012) |
Organosulfur | Sulforaphane | Cisplatin | Ovary | HIF-1α | (Pastorek et al., 2015) |
Phenol | Phenylethyl isothiocyanate | + | In vivo | Mcl-1 glutathionylation | (Li et al., 2016) |
Emodin | Doxorubicin | Lung | Anthracycline reductases | (Hintzpeter, Seliger, Hofman, Martin, Wsol, & Maser, 2016) | |
Steroid | Cucurbitacin b | + | Gastric | CIP2A/PP2A/mTORC1 | (Liu et al., 2017) |
Triterpenoid | Adcx | Paclitaxel | Liver | Akt/autophagy | (Sun et al., 2017) |
Polyphyllin I | Erlotinib | Lung | IL-6/STAT3 | (Lou, Chen, Zhu, Deng, Wu, & Wang, 2017) | |
Via inhibiting drug efflux | |||||
Alkaloid | Cinchonine | Paclitaxel | Uterine | (Lee et al., 2011) | |
Hydrocinchonine | Paclitaxel | Uterine | (Lee et al., 2011) | ||
Quinidine | + | + | (Lee et al., 2011) | ||
Diarylheptanoid | Curcuminoid | Doxorubicin | Leukaemia | (Xu, Tian, & Shen, 2013) | |
Diterpenoid | Tanshinone IIA | Doxorubicin | Gastric | (Xu et al., 2018) | |
Flavonoid | Biochanin A | Daunorubicin | Breast | (Zhang, Sagawa, Arnold, Tseng, Wang, & Morris, 2010) | |
Glabridin | Doxorubicin | + | (Qian et al., 2019) | ||
Lignan | Matairesinol | Doxorubicin | Colon | (Su, Cheng, & Wink, 2015) | |
+ | + | Leukaemia | (Su, Cheng, & Wink, 2015) | ||
Monoterpene | Borneol-peg-np | Paclitaxel | Ovary | (Zou et al., 2017) | |
Triterpenoid | Maslinic acid | + | Diarthrosis/smooth muscle | (Villar et al., 2014) | |
Oleanolic acid | + | + | (Villar et al., 2014) | ||
Ursolic acid | Doxorubicin | Breast | (Zong, Cheng, Liu, Pi, Liu, & Song, 2019) | ||
Xanthone | Forbesione | Doxorubicin | Bile duct | NF-κB & p-Glycoprotein | (Hahnvajanawong et al., 2014) |
Isomorellin | + | + | (Hahnvajanawong et al., 2014) | ||
Xanthonoid | Mangiferin | + | Breast | p-Glycoprotein, MRP-1, BCRP | (Louisa, Soediro, & Suyatna, 2014) |
Gambogic acid | Multidrugs | Multi-cancer | p-Glycoprotein | (Wang et al., 2013) |
- Note. Intrinsic: Bcl-2/Bcl-XL/caspase-3, 9; Extrinsic: DR/Bid/caspase-3, 7, 8; +, the same with above cell.
Recent-known mechanism of chemoresistance
Table 3. Natural compounds as potential adjuvants to cancer therapy: Unpredictable adverse events
Herbal compoundsChemotherapeutic drugsCancer or normal cell typeAdverse effect and relevant mechanismReferencea
Curcumin | Doxorubicin | Cardiac muscle cells | Apoptosis-ROS | (Hosseinzadeh, Behravan, Mosaffa, Bahrami, Bahrami, & Karimi, 2011) |
Etoposide | Cervix/Breast/Colorectal | Offset cancer cell death via DDR/γ-H2AX | (Saleh, El-awady, Eissa, & Abdel-Rahman, 2012) | |
Acetyl-L-carnitine | Taxane | Breast cancer | Increase peripheral neuropathy | (Hershman et al., 2013) |
Chokeberry | Trabectedin | Liposarcoma | Induce rhabdomyolysis | (Strippoli, Lorusso, Albano, & Guida, 2013) |
Bu Zhong Yi Qi Wan | Temozolomide/radiation | Glioblastoma | Induce acute liver toxicity | (Melchardt et al., 2014) |
- a For Reference list, see Data S2.
Putative mechanism of natural compounds in chemotherapeutic synergism
'암치료' 카테고리의 다른 글
Synergies (암 치료에 시너지효과를 일으키는 보충제들) (0) | 2021.08.18 |
---|---|
약물의 용도 변경(2021): 암 치료제를 위한 매력적인 약리학적 전략 (0) | 2021.08.17 |
⚡수명을 연장하는 암 치료-란야 (0) | 2021.08.09 |
⚡암 산화치료-란야 (0) | 2021.08.09 |
⚡소포체스트레스 + 오토파지 억제 + 프로테아좀 억제에 의한 아포토시스 유도-란야 (0) | 2021.08.09 |