2019
Dietary Phytochemicals Targeting Cancer Stem Cells
https://www.mdpi.com/1420-3049/24/5/899/htm
Dietary Phytochemicals Targeting Cancer Stem Cells
There is an increasing awareness of the importance of a diet rich in fruits and vegetables for human health. Cancer stem cells (CSCs) are characterized as a subpopulation of cancer cells with aberrant regulation of self-renewal, proliferation or apoptosis
www.mdpi.com
Table 1. Markers of CSCs in various tissues.
Cancer TypeMarkerReferences
Brain cancer | CD34+/CD38−/CD133+/CD44+ | [6,23] |
Breast cancer | CD44+/CD24−/Lineage-/ALDH1+/ EpCAM+ | [18,20,23] |
Colon cancer | CD133+/CD44+/CD166+/ ALDH1+/LGR5+/EpCAM+ | [6,18,19] |
Leukemia | CD34+/CD38−/CD90− | [6,18,19] |
Liver | CD133+/CD90+/EpCAM+ | [6] |
Lung | CD133+/CD44+/CD90+ | [2,18] |
Ovary | CD44+/ALDH1+/CD133+ | [6,18] |
Pancreas | CD44+/CD24+/CD133+/EpCAM+ | [18,23] |
Explanatory notes: + presence; − absence. Abbreviations used: ALDH1-Aldehyde dehydrogenase 1; CD24/34/38/44/90/133/166-Cluster of Differentiation 24/34/38/44/90/133/166; EpCAM-Epithelial Cell Adhesion Molecule.
able 2. Cancer stem cells signaling pathways aberrantly regulated in selected malignancies.
Signaling PathwayCancer TypeMechanism of ActionReferences
Notch | Brain cancer | ↑Notch1 ↑JAG1 ↑DLL1 | [6,40,44] |
T cell acute lymphoblastic leukemia | ↑ Notch1 | ||
Breast cancer | ↑Notch1 ↑JAG1, | ||
Pancreatic cancer | ↑Notch1 ↑Notch3 ↑Jag1 ↑Jag2 ↑Hes1 |
||
Non-Small Lung Cancer | ↑ Notch3 | ||
Wnt/β-catenin | Breast cancer | ↑LEF-1 ↑TCF-4 ↑cyclin D1 ↑β-catenin ↓SFRP |
[6,40,41,47] |
Colorectal carcinoma Brain tumor Prostate cancer |
Mutations in APC/β-catenin site | ||
Hematologic cancer Skin cancer Lung cancer |
↓ WIF-1 ↓SFRP-1 ↓ DKK ↓AXIN2 |
||
Hedgehog | Colon cancer | ↑sHH ↑GLI2 | [6,40] |
Medulloblastoma predisposition | Mutations in PTCH1 | ||
Myeloma | ↑SMO ↑GLI1 | ||
Glioma | ↑GLI1 ↑SHH ↑PTCH1 |
||
PI3K/Akt/mTOR | Gastric cancer | ↑Akt1 | [19] |
Ovarian cancer Pancreatic cancer |
↑Akt2 | ||
T cell acute lymphoblastic leukemia Melanoma Endometrial carcinoma Prostate cancer Glioblastoma |
Mutations in PTEN | ||
JAK/STAT | Breast cancer Gastric cancer Glioblastoma |
↑STAT3 | [53,54,40] |
Explanatory notes: ↓decrease; ↑increase.
Figure 2. Mechanisms involved in stem-like maintenance and death resistance of CSCs.
Table 3. Anticancer mechanisms of dietary phytochemicals (isolated or mixtures) targeting CSCs.
Phytochemical(Isolated or Mixture)Cell Line/Animal ModelMechanismReferences
EGCG | A549, H1299 | ↓β-catenin ↓CD133 ↓CD44 ↓ALDH1A1 ↓Nanog ↓Oct4 |
[66] |
EGCG/ EGCG and cisplatin |
HNSC CSCs BALB/c nude mice |
↓Oct4 ↓Sox2 ↓Nanog ↓CD44 ↓ABCC2 ↓ABCG2 |
[67] |
Resveratrol | MCF-7, SUM159 NOD/SCID xenografted mice |
→autophagy ↓Wnt/β-catenin |
[69] |
GBM2, GBM7, G144, G179, G166, GliNS2, GBM04 | ↓β-catenin ↓c-Myc ↓Twist1 ↓Snail1 |
[70] | |
MNNG/HOS. MG-63, hFOB1.19 | ↓JAK2/STAT3 ↓CD133 |
[71] | |
Pterostilbene | MCF7, MDA-MB-231 | ↓NF-κB ↓Twist1 ↓vimentin ↑E-cadherin |
[72] |
HCC Mahlavu | ↓c-Myc ↓COX-2 ↓vimentin ↓CXCR4 ↓Twist1 |
[43] | |
Genistein | MCF-7 Nude mice |
↓SMO ↓GLI1 |
[74] |
SKOV3 Nude mice |
↓CD 163 ↓p-STAT3 ↓IL-10 ↑IL-12 ↓CD133 ↓CD44 |
[52] | |
GCSLCs | ↓ Twist1 ↓N-cadherin ↑E-cadherin ↓CD133 ↓CD44 ↓ALDH1 |
[75] | |
Curcumin | BL41-3, Ramos, DG-75, THP-1 | ↓ALDH+ cells ↓GLI1 ↓Notch1 ↓cyclin D1 |
[78] |
MCF-7, MDA-MB-231 Athymic mice |
↓ABCG2 ↓ABCC1 | [79] | |
U87, T98G U87-implanted nude mice |
↓sHH ↓SMO ↓GLI1 ↓cyclin D1 ↓Bcl-2 ↓FoxM1 ↑Bax/Bcl-2 ratio |
[49] | |
DU-145 | ↓cyclin D1 ↓CDK2 ↓Bcl-2 ↑p21 ↑p27 ↑p53 |
[80] | |
Sulforaphane | NOD/SCID/IL2Rgamma mice | ↓SMO ↓GLI1 ↓GLI2 ↓Nanog ↓Oct-4 ↑Bcl-2 ↓Zeb-1 ↓E-cadherin ↓VEGF ↓PDGFRα |
[83] |
BalbC/nude mice | ↓CR1 ↓CR3 ↓Nanog ↓ALDHH1A1 ↓Wnt3 ↓Notch4 |
[85] | |
BEAS-2B, H460, H1299, A549 | ↓c-Myc | [84] | |
Phenethyl isothiocyanate | DLD-1 SW480 |
↓size/number of cell spheroids ↓CD133+ |
[77] |
293T, NCCIT, HCT116 Xenograft model |
↓Oct4 ↓Sox-2 ↓Nanog | [86] | |
Diallyl trisulfide | SW48, DLD-1 | ↓β-catenin ↓c-Myc ↓cyclin D1 |
[87] |
MCF-7, SUM159 | ↓CD44 ↓ALDH1A1 ↓Nanog ↓Oct4 |
[88] | |
Capsosiphon fulvescens | AGS | ↓Wnt-1 ↓β-catenin → G0/G1 arrest |
[90] |
Origanum vulgare | NMU-induced rat mammary carcinogenesis | ↓CD24 ↓EpCAM |
[91] |
Syzygium aromaticum | NMU-induced rat mammary carcinogenesis | ↓CD24 ↓CD44 ↑ALDH1 | [92] |
Pomegranate extract | DMBA-induced rat mammary carcinogenesis | ↓ER-α:ER-β↓β-catenin ↓cyclin D1 ↓COX-2 ↑Nrf2 IκBα degradation and NF-κB translocation blockage |
[93] |
Trianthema portulacastrum extract | DMBA-induced rat mammary carcinogenesis | ↓COX-2 ↑Nrf2 IκBα degradation and NF-κB translocation blockage |
[94] |
Pao Pereira extract | PANC-1, MIA PaCa-2, AsPC-1, HPAF-II, BxPC-3 in immunocompromised mice | ↓Nanog ↓β-catenin |
[95] |
Rauwolfia vomitoria extract | PANC-1, AsPC-1, HPAF-II, BxPC-3 and MiA PaCa-2 in immunocompromised mice | ↓Nanog ↓β-catenin |
[96] |
Chinese bayberry leaf proanthocyanidins (BLPs) | OVCAR-3 | ↓β-catenin ↓cyclin D1 ↓c-Myc →G1 arrest |
[97] |
HT-EA, SA-EA, PT-EA | Panc-1, MiaPaCa-2, Panc-3.27, and BxPC-3 Athymic NCr-nu/nu nude mice |
↓Nanog ↓Oct-4 ↓Sox2 ↓N-cadherin |
[98] |
Water extract of Gynura divaricata (GDE) | Huh7, Hep3B | ↓β-catenin | [99] |
Resveratrol (RSV) and grape seed extracts (GSE) | Human colon CSCs Azoxymethane-induced mice |
↓ nuclear translocation of β-catenin ↓c-Myc ↓cyclin D1 ↑p53 ↑Bax/Bcl-2 |
[100] |
Explanatory notes: ↓ decrease; ↑ increase; → induction. Abbreviations used: ABCC1-ATP Binding Cassette Subfamily C Member 1; ABCC2-ATP Binding Cassette Subfamily C Member 2; ABCG2-ATP Binding Cassette Subfamily G Member 2; ALDH1A1-Aldehyde Dehydrogenase 1 Family Member A1; Bcl-2-B-cell Lymphoma Protein Family CD136/133/44/24, Cluster of Differentiation 136/133/44/24; CDK2-Cyclin-dependent Kinase 2; c-Myc, MYC protoonkogene; COX-2-Cyclo- oxygenase 2; CR1-CRIPTO-1/TDGF1, Teratocarcinoma-derived Growth Factor 1, CR3, CRIPTO-3/TDGF1P3, Putative Teratocarcinoma-derived Growth Factor 3; CXCR4-Chemokine Receptor Type 4; EpCAM-Epithelial Cell Adhesion Molecule; ERα-Estrogen Receptor Alfa; ERβ-Estrogen Receptor Beta; FoxM1-Forkhead Box Protein M1; GLI1/2-Zinc Finger Protein 1/2; IL-10/12-Interleukin 10/12; JAK-Janus kinase; NF-κB-Nuclear Factor Kappa-light-chain-enhancer of Activated B cells; Notch1-4-Notch receptors; NRF2-Nuclear Factor Erythroid 2–related Factor 2; p21-Cyclin-dependent Kinase Inhibitor 1; p27-Cyclin-dependent Kinase Inhibitor 1B; p53-Tumour Protein p53; PDGFRα-Platelet-derived Growth Factor Receptor Alpha; pSTAT3-Phospho-Signal Transducer and Activator of Transcription 3; sHH- Sonic Hedgehog; SMO- Transmembrane protein SMOOTHENED; Snail1-Zinc Finger Protein; STAT-Signal Transducer and Activator of Transcription; Twist1-Twist family BHLH Transcription Factor 1/gene; VEGF-Vascular Endothelial Growth Factor; Zeb-1-Zinc finger E-box-binding Homeobox 1.
'줄기세포' 카테고리의 다른 글
암 줄기 세포를 위한 천연 제품에 의한 자가포식 조절의 치료 가능성 (0) | 2021.10.14 |
---|---|
다제내성 극복을 위한 잠재적 표적으로서의 암 줄기세포 (0) | 2021.10.14 |
종양 미세 환경 내에서 암 줄기 세포의 치료 표적화의 발전:업데이트된 리뷰-그림만 (0) | 2021.10.11 |
암 줄기 세포와 그 미세 환경을 표적으로 하는 치료 전략-그림만 (0) | 2021.10.11 |
암 줄기 세포를 표적으로 하는 치료법:그림만 (0) | 2021.10.11 |