https://www.mdpi.com/2072-6694/12/3/562/htm
Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma
Table 1. Dysregulated autophagy genes/proteins in cancer.
Genes/ ProteinsFunction in Autophagy Alterations in Cancer Reference
BECN1 | Autophagosome formation | Monoallelic deletion of the Beclin-1-encoding gene in the human breast, ovarian, prostate, colorectal cancers, leukemia, lung, liver, endometrial, colorectal, glioblastoma and brain cancers | [93,94,95,103] |
EI24/PIG8 | Autophagosome formation and/or degradation | Mutations and deletions are associated with human early-onset breast cancers | [100] |
mTOR | Autophagy regulation | Somatic mutation of mTOR in melanoma, lung (large cell), ovary (mucinous), colorectal, brain and kidney cancer cells | [104] |
Atg5 | Autophagic vesicle formation | Alterations of Atg5 protein expression and somatic mutations of the Atg5 gene are found in prostate cancers | [100,101] |
Atg2B, Atg9B, Atg5 and Atg12 | Implementation of the autophagy process; autophagosome formation in early stages autophagy |
A frameshift mutation in gastric and colorectal cancers | [105] |
UVRAG | Nucleation and fusion | Deletion mutation is associated with human colorectal cancer Mutated in gastric and colorectal cancers with microsatellite instability |
[105,106] |
p53 | Autophagy regulation | Somatic mutation in human cancer | [107] |
DRAM1 | Autophagy regulation | Substitution mutation in human non-small cell lung carcinoma cell | [108] |
LAMP2 | Mediation of transport of a specific set of cytosolic proteins across the lysosomal membrane in chaperone-mediated autophagy | A missense mutation in pancreatic cancer | [109] |
Parkin (E3 ubiquitin ligase) | Autophagy regulation via Bcl-2 | A point mutation in ovarian, breast, bladder and lung cancer | [110] |
Table 2. Autophagy-associated anti-HCC polyphenols.
PolyphenolsCompounds Cancer Model(Cell line/Animal) Role in Autophagy Reference
Flavonoids | ||||
Flavones | Apigenin | HepG2 | Inhibited PI3K/Akt/mTOR pathway and downregulated SQSTM1 | [176] |
Oroxylin A | HepG2 | Caused overexpression of Atg5 and Atg7, inhibition of autophagy by si-Beclin-1 and 3-methyladenine and suppression of PI3K-PTEN-Akt-mTOR signaling pathway |
[177] | |
Isorhamnetin | Mice | Interfered with p38/PPAR-α pathway | [178] | |
Baicalein | SMMC-7721 | Displayed downregulation of CD147 and protective autophagy; Protective autophagy via ER stress |
[180] [181] [195] |
|
Tangeretin | HepG2 | Interfered with JNK/Bcl-2/Beclin-1 -mediated pathway | [182] | |
Wogonin and sorafenib combination | Hep3B & Bel-7402, HepG2 & SMMC-7721 | Induced autophagy inhibition | [183] | |
Isoorientin | HepG2 | Induced overexpression of Beclin-1 and LC3-II, ROS-related p53, PI3K/Akt, JNK, and p38 | [184] | |
Luteolin | SMMC-7721 | Increased Beclin-1 expression and LC3B-II conversion | [185] | |
Flavonols | Galangin | HepG2 Hep3B |
Interfered with p53-dependent pathway and TGF-β receptor/Smad signaling pathway |
[186] [187] |
Kaempferol | SK-HEP-1 HepG2 & Huh 7 |
Increased protein expression of p-AMPK, LC3-II, Atg 5, Atg 7, Atg 12 and Beclin- 1 CHOP-autophagy mediated |
[188] [189] |
|
Quercetin | LM3 Mice |
Increased expression of LC3, and downregulated expression of p62; Activated autophagy, Increased the formation of autophagosomes and autolysosomes |
[190] [191] |
|
Myricetin | Inhibited the phosphorylation of mTOR | [192] | ||
Flavanols | EGCG | HepG2 | Increased expression of Beclin1, Atg5, increased level of p62 autophagic substrate, promoted the synthesis of LC3-II | [193] [196] |
EGCG and doxorubicin combination | Hep3B | Increased Beclin-1 and Atg5 expression and suppressed LC3 expression | [194] | |
Anthocyanidins | Delphinidin | SMMC-7721 | Exhibited overexpression of LC3-II | [197] |
Non-flavonoids | ||||
Stilbenes | Resveratrol | Huh 7 MHCC-97H |
Increased the expression of autophagy-related proteins Atg5, Atg7, Atg9, and Atg12 Activated p53 and inhibited PI3K/Akt |
[198] [199] |
Hydroxycinnamates | EHHM | HepG2 | Increased the expression of Atg5, Beclin-1 and LC3-II proteins | [200] |
Miscellaneous non-flavonoids | Curcumin | Huh 7 HepG2 |
Increased the formation of autophagic vacuoles due to the conversion of LC3-I to LC3-II; Induced autophagy with decreased expression of SQSTM1 |
[201] [202] |
Curcumin with adriamycin (doxorubicin) | HepG2 | Increased the expression of LC3-II protein | [203] | |
Analogs of non-flavonoids | EF25-(GSH)2 | HL-7702 | Induced autophagy | [204] |
WZ35 | HCCLM3 | Downregulated YAP-mediated and autophagy inhibition | [205] |
그림 3. 자가포식 유발 항HCC 폴리페놀 신호 전달 경로의 개략도.
간암에 대한 플라보노이드에 의해 매개되는 자가포식 관련 신호전달 메커니즘.
Apigenin, oroxylin A 및 resveratrol은 PI3K/Akt/mTOR 신호 전달 경로를 억제할 수 있습니다.
루테올린, 이소오리엔틴, 케르세틴, 캠페롤, 커큐민, 커큐민, 아드리아마이신 포함, EGCG, EHHM, 델피니딘, EF25-(GSH) 2LC3 II의 전환에 관여하면 자가포식을 유도할 수 있습니다.
미리세틴은 mTOR 신호 전달 경로의 인산화를 억제할 수 있습니다.
Oroxylin A, resveratrol 및 kaempferols는 autophagy 관련 단백질을 증가시켜 LC3 II의 지질화를 증가시킬 수 있습니다.
소라페닙, WZ35 및 탄게레틴과 함께 Wogonin은 자가포식 경로를 억제할 수 있습니다.
Galangin은 TGF-β 수용체/Smad 신호 전달 경로에 의해 자가포식을 유도할 수 있습니다.
바이칼레인은 CD147의 음성 조절과 연관되어 ER 스트레스를 통해 보호 자가포식을 매개할 수 있습니다.
'암치료' 카테고리의 다른 글
식이 파이토케미컬을 통한 ROS 매개 암세포 사멸 (0) | 2021.09.15 |
---|---|
종양 산증의 원인, 결과 및 치료 (0) | 2021.09.15 |
암환자의 건강기능식품 사용 안전성 (0) | 2021.09.13 |
암 연구에서의 식물 유래 천연 제품 (0) | 2021.09.13 |
암에서 산화환원 항상성의 교란에서 파이토케미칼의 역할 (0) | 2021.09.12 |